دانشکده داروسازی
پایان‌نامه جهت دریافت دکتری عمومی داروسازی
تحت عنوان:
مقایسه تأثیر بوپروپیون و سلکوکسب بر شاخص‌های رفتاری و التهابی در وابستگی
ناشی از مورفین در موش سوری

نگارش
محمد‌مهدی مختاری

استاد راهنما
دکتر بهلول حیبی‌اصل
دکتر یاداله آذرمی

استاد مشاور
دکتر جواد محمودی

شماره پایان‌نامه: ۱۳۹۸ آذر ماه
سُلَّمَ الْجَهَرُ
کوایت صحیح و اصولی می‌باشد

پیش‌نمونه کوایتی می‌باشد که تثبیت اراد شده در این پیام نام‌ها عامل کار اصل این‌جا نیست و بر عهده کی‌تی اصلی و اطلاع علی‌ال月至 است. تمامی اطلاعات مربوط به گزارش صورتی ارائه نشده است. موارد استفاده شده از آثار و کتاب‌های با صحت کامل نیز درک نظریه است. تهیه، تولید و سوزنی قبلاً ثبیت نموده‌اند.

کلمات نواهی به

کمی حقیقی باید و منفی این اثر را از طریق پیام‌های داده‌های و دانشگاه علوم پزشکی تهران به هر بخش‌هایی بپردازد.

کمی تصدیقی بال‌ان با باید با سطح عقل است.

نام و نام خانوادگی استاد راهنما:

شماره دانشجوی:

امضا:

نام و نام خانوادگی دانشجو:

تاریخ:
ANOVA: Analysis of variance

COX: Cyclooxygenase

CaMk II: calmodulin-dependent protein kinase II

IL-1β: Inter Leukin 1 Beta

NMDA: N-methyl-D-aspartat

NO: Nitric Oxide

NOS: Nitrous Oxide Synthase

NSAID's: Nonsteroidal anti-inflammatory drugs

PKC: Protein kinase C

r.p.m: Revolutions per minute

SEM: standard error of the mean

TNF-α: Tumor Necrosis Factor Alpha
ارزیابی اثرات رژیم درمانی بوپروپیون در علائم قطع مصرف مورفین (تعداد پرش)

ارزیابی اثرات رژیم درمانی بوپروپیون در علائم قطع مصرف مورفین (تعداد پرش)

اثرات رژیم درمانی سلکوکسیب در علائم قطع مصرف مورفین (تعداد ایستادن)

اثرات رژیم درمانی سلکوکسیب در علائم قطع مصرف مورفین (تعداد پرش)

اثرات رژیم درمانی توأم داروهای سلکوکسیب (5 mg/kg,i.p.) و بوپروپیون (2 mg/kg,i.p.) در علائم قطع مصرف مورفین (تعداد پرش)

اثرات رژیم درمانی توأم داروهای سلکوکسیب و بوپروپیون در علائم قطع مصرف مورفین (تعداد ایستادن)

اثرات رژیم درمانی توأم داروهای سلکوکسیب و بوپروپیون در علائم قطع مصرف مورفین (تعداد پرش)

اثرات رژیم درمانی توأم داروهای سلکوکسیب و بوپروپیون در علائم قطع مصرف مورفین (تعداد ایستادن)

اثرات رژیم درمانی توأم داروهای سلکوکسیب و بوپروپیون در علائم قطع مصرف مورفین (تعداد پرش)

اثرات رژیم درمانی توأم داروهای سلکوکسیب و بوپروپیون در علائم قطع مصرف مورفین (تعداد ایستادن)

بتایه در تجزیه و بررسی

References

جدول (1) - نتایج مربوط به تست IL-1β در گروه‌های مورد مطالعه.

جدول (2) - نتایج مربوط به تست TNFα در گروه‌های مورد مطالعه.
جدول (1-5) تأثیر داروهای مختلف بر واپستگی به مورفین.

نمودار (1): اثرات مصرف مورفین (50 mg/kg,i.p.) بر روی علائم قطع مصرف مورفین.

نمودار (2): اثرات مختلف دوزهای بوپروپیون (0.8, 4, 8 mg/kg,i.p.) بر روی علائم قطع مصرف مورفین.

نمودار (3): اثرات مختلف دوزهای سلکوکسیب (5, 10, 20 mg/kg,i.p.) بر روی علائم قطع مصرف مورفین.

نمودار (4): اثرات مصرف توام ماده داروهای سلکوکسیب و بوپروپیون (2 mg/kg,i.p.) بر روی علائم قطع مصرف مورفین.

نمودار (5): اثرات مصرف توام داروهای سلکوکسیب و بوپروپیون (5 mg/kg,i.p.) بر روی علائم قطع مصرف مورفین.
چکیده:

یکی از مشکلات مربوط به مصرف طولانی مورفین عارضه تحمل و وابستگی است، در مصرف حاد مورفین تولید و ترشح سایتوکاين های مختلف (TNF-α و IL-β و غیره) و سیستم گلوتامات تحت تأثیر قرار می‌گیرد. بوپروپیون از داروهای ضد افسردگی و سلکوکسیب به عنوان یک داروی ضد التهاب ترشح سایتوکاين های مختلف را تحت تأثیر قرار می‌دهد.

هدف:

در این مطالعه تأثیرات احتمالی بوپروپیون و سلکوکسیب در وابستگی ناشی از مورفین مورد ارزیابی قرار گرفت.

مواد و روش کار:

در مطالعه حاضر، از 90 سر موش سوری نر (100-300 gr) استفاده شد. موشها به طور تصادفی به 10 گروه نهایی تقسیم شدند. گروه های مختلف، رژیم های دارویی را به ترتیب به مدت 6 روز دریافت کردند. حیوانات ابتدا به مدت دو روز دوزهای مختلفی از رژیم های دارویی بوپروپیون (2,4,8 mg/kg, ip) یا سلکوکسیب (5,10,20 mg/kg, ip) دریافت کردند. چگالی و یا نوام (سلکوکسیب 2 mg/kg,ip و بوپروپیون 5 mg/kg,ip) دریافت کردند. سپس به مدت چهار روز مورفین با دوز (50 mg/kg, ip) به همراه دوزهای دیگر رژیم‌های دارویی مورد مطالعه به موشها تزریق شد. در روز ششم 2 ساعت بعد از آخرين دوز مورفین
چکیده
حیوانات نالوکسان (4 mg/kg, ip) را دریافت کردن و علائم قطع مصرف (پریدن و استاند روی دوپا) به مدت نیم ساعت در هر حیوان مورد ارزیابی قرار گرفت.

نتایج:
نتایج نشان داد که تجویز دوز های مختلفی از داروی سلکوکسیب تاثیر معنی داری در علائم قطع مصرف ناشی از مورفین نداشت. ولی بوپروپیون در دوز 8 mg/kg موجب افزایش معنی داری در علائم قطع مصرف شد (P<0.01). همچنین تغییرات معنی داری در سطوح سرما فاکتورهای التهابی ناشی از دوزهای مختلف داروها مورد مطالعه مشاهده نگردید.

نتیجه گیری:
سلکوکسیب و بوپروپیون با دوزهای مورد مطالعه کاندید مناسبی جهت کاهش وابستگی ناشی از مورفین نمی باشند.

کلمات کلیدی: سلکوکسیب، بوپروپیون، مورفین، وابستگی و التهاب، موش سوری.
فصل اول:

مقدمه
فصل اول: مقدمه

اپیوئیدها برای درمان انواع فرم های درد (حاد و مزمن) استفاده می شوند (1). اپیوئیدها اثر فارماکولوژیک خود را با اتصال به گیرنده های مختلف در سیستم عصبی توصیف می کنند. اپیوئید ها با اتصال به گیرنده های مخصوصی سیستم عصبی و بر این اساس تسکین درد را ایجاد کرده اند. اپیوئید ها به وسیله مواد مخدر اغلب توسط گیرنده های مخصوصی صورت می گیرد (2).

مصرف طولانی مدت اپیوئیدها سبب عارضه تحمل و وابستگی می شود و مشخصه وابستگی می کند. تسکین درد به وسیله مواد مخدر اغلب توسط گیرنده های مخصوصی صورت می گیرد (3). مصرف طولانی مدت اپیوئیدها سبب عارضه تحمل و وابستگی می شود و مشخصه وابستگی می کند.

مصرف طولانی مدت اپیوئیدها سبب عارضه تحمل و وابستگی می شود و مشخصه وابستگی می کند.

مصرف طولانی مدت اپیوئیدها سبب عارضه تحمل و وابستگی می شود و مشخصه وابستگی می کند.

مصرف طولانی مدت اپیوئیدها سبب عارضه تحمل و وابستگی می شود و مشخصه وابستگی می کند.

مصرف طولانی مدت اپیوئیدها سبب عارضه تحمل و وابستگی می شود و مشخصه وابستگی می کند.
فصل اول: مقدمه

دردهای نوروپاتیک ثابت شده است (99-93). استفاده ی مکرر بوپروپیون ایجاد تحمل به اثر مصرف بنزودیازپین‌ها و ماری‌جووانا نشان داده شده است (15, 16). طبق پژوهش‌های انجام شده بوپروپیون با تأثیر بر سیستم گلوتامات، اپی نفرین، سیستم التهابی، و با تأثیر بر کاهش استرس اکسیداژیور موجب کاهش تحمل و واپسرگی به مورفین می‌شود (17). همچنین نقش سایتوکاین‌ها در افزایش تحمل به مورفین و واپسرگی فیزیکی ورواتی بصورت گسترده در دست نشان داده است که مصرف حاد مورفین تولید و وابسته In vitro مطالعات است. مطالعات سایتوکاین‌های مختلف شامل IL-6، IL-1β، (19)، TNF-α، (18)؛ RA تغییر می‌دهد؛ بیش فعالی سلولهای گلیا و افزایش ترشح سایتوکاین‌های پیش التهابی در طبیعی سایتوکاین‌های مارکر مشاهده شده است (21). ظهور TNF-α رابطه که در رده‌های کاهش داده است (22). از طرفی دیگر استفاده از سلکوکسب (مکرر انتخابی 2) (M) موجب کاهش اثرات ناشی از شده (23) و اثرات آن بر اکسیداژیور داشته (17). همچنین باعث کاهش دوز مورد نیاز مورفین می‌گردد (25)، لذا در مطالعه‌های حاضر مقایسه‌ای از این تأثیرات احتمالی بوپروپیون و سلکوکسب در واپسرگی ناشی از مورفین نورد ارزیابی گرفته.
فصل اول: مقدمه

الف) هدف کلی طرح:
مقایسه تأثیر بوپروپیون و سلکوکسبیپ بر شاخص‌های رفتاری و انتهایی در وابستگی ناشی از مورفین در موش سوری.

ب) هدف اختصاصی طرح:
1. ارزیابی اثر دوزهای مختلفی از بوپروپیون بر وابستگی ناشی از مصرف مورفین.
2. ارزیابی اثر دوزهای مختلفی از سلکوکسبیپ بر وابستگی ناشی از مصرف مورفین.
3. ارزیابی اثر دوزهای مؤثر و ترکیب بوپروپیون و سلکوکسبیپ بر وابستگی ناشی از مصرف مورفین.
4. ارزیابی اثر سلکوکسبیپ و بوپروپیون بر فاکتورهای التهابی (TNF-α و IL-1β).

فرضیات:
1. بوپروپیون قادر است عوارض قطع مصرف مورفین را کاهش دهد.
2. سلکوکسبیپ قادر است عوارض قطع مصرف مورفین را کاهش دهد.
3. مصرف ترکیب بوپروپیون و سلکوکسبیپ بهتر از تزریق به تنها این داروها می تواند عوارض قطع مصرف را کنترل کند.
4. مصرف بوپروپیون و سلکوکسبیپ باعث تغییر در میزان فاکتورهای التهابی (TNF-α و IL-1β) می شود.
فصل دوم:
مروری بر متون
فصل دوم: مروری بر متون

مقدمه

ایپوئیدها به عنوان یکی از بهترین داروهای دردسرپذیری شدید حاد و مزمن، همچنان به طور وسیع در بیماران سرطانی مورد مصرف واقع می‌شوند. از جمله داروهای گروه ایپوئید مورفین می‌باشد. یکی از مشکلات ایجاد شده به وسیله این دارو در مصرف طولانی مدت ایجاد تحمل و واستگی است که این عوارض کارایی درمانی ایپوئیدها را محدود کرده است (۲۶،۲۷).

مکانیسم‌های دقیق بروز تحمل به ایپوئیدها به طور کامل شناخته نشده است، ولی دلایل زیادی مربوط به نقش گیرنده‌های NMDA (۲۷) و سایتوکاین‌های پیش‌التهابی وجود دارد. در این رابطه تحقیقات زیادی انجام شده است که همگی موید آن است که آنتاگونیست‌های گیرنده مورفین منجر به مهار تحمل به مورفین می‌شود (۲۸-۳۹).

آنتاگونیست‌های گیرنده مورفین منجر به مهار تحمل به مورفین می‌شود (۲۸-۳۹).

سلکوکسیب با مهار انتحابی COX2، موجب کاهش سایتوکاین‌های پیش‌التهابی می‌شود (۵۳)، و بوپروپیون نیز به عنوان مهارکننده ریلی گلوتامات از تحريك گیرنده توسط این نوروئنتسم‌ها جلوگیری می‌کند (۳۲،۳۳).

۲-۲ ضد دردهای ایپوئیدی

۲-۲۱ دردهای اوپیوئیدی برای اولین بار Sertturner برای اولین بار در سال ۱۸۰۳ میلادی توانسته مورفین را از گیاه خشخاش جداسازی کند. مورفین یک آکونیست گیرنده های ایپوئیدی بوده و به عنوان یک ضد درد قوی شناخته می‌شود (۲۴).
خانواده اپیوئیدها شامل آگونیستهای کامل و نسبی و آنتاگونیستهای گیرنده‌های اپیوئیدی است. این گیرنده‌ها با نام‌های \(\kappa \), \(\delta \) و \(\mu \) شناسایی شده‌اند. گیرنده \(\mu \) گیرنده اصلی ضد درد است و مورفین یک آگونیست کامل برای این گیرنده به حساب می‌آید. در حالیکه کدتین یک آگونیست نسبی است. برخی از اپیوئیدها روی یک گیرنده اثر آگونیستی و روی دیگر اثر آنتاگونیستی دارند. این ویژگی‌ها می‌توان با دستکاری ساختار شیمیایی آنها تغییر داد.

سه دسته اصلی از گیرنده‌های اپیوئیدی در بدن شناسایی شده‌اند. همانطور که قبل اشاره شد گیرنده‌های سیستم اپیوئیدی شامل \(\kappa \), \(\delta \) و \(\mu \) می‌باشند. این گیرنده‌ها متصل به

\[\text{G} \]

بوده و از نظر توالی اسید آمینه‌ها، شباهت زیادی به

\[\text{Ca}^{++} \]

با فعال شدن گیرنده‌های اپیوئیدی تغییر فعالیت کانال‌های بونی و تنظیم جابه‌جایی داخل سلولی اتفاق می‌افتد. اپیوئیدها در پایان‌های عصبی نورون‌های پیش سیتیپسی کانال‌های کلسیمی واسطه‌بندی شده و آزادسازی کلسیمی را کاهش می‌دهند. این در مورد نورترانسیمترهای دیگر (گلوتامات، استیل کولین، ماده \(\text{P} \), نورابی نفرین و سروتونین) نیز دیده شده است. از طرفی اپیوئیدها با باز کردن کانال‌های پتانسیمی نورون‌های پس سیتیپسی را هایپرپلاریزه و مهار می‌کنند.
تجهیز طولانی مدت اپیوئیدها باعث بروز تحمل و واکنشگی و قطع مصرف این مواد می‌شود. موجب پیدایش علائمی چون بی قراری، اضطراب، پرخاشگری و تحريك پذیری می‌شود که در اصطلاح این علائم را سندروم ترک (Withdrawal syndrome) می‌نامند. به دلیل بروز چنین بیدیده‌های محدودیت بیشتری برای استفاده بالینی از این ترکیبات وجود دارد (۲).

تحمل به اثرات داروها در سطح فارماکوکینتیک و یا فارماکودینامیک امکان‌پذیر است. در تحمل فارماکودینامیکی ممکن است در عملکرد و تعداد گیرنده‌های اپیوئیدی تغییراتی ایجاد شده و منجر به کاهش حساسیت گیرنده توسط دارو و کاهش اثر دارو شود (۳۶).

مکانیسم دقیق تحمل و واکنشگی و سندروم ترک ناشی از مصرف اپیوئیدها به طور کامل شناخته نشده است. اما بر اساس برخی از مطالعات انجام شده، از بین مکانیسم‌هایی که در پدیده تحمل و واکنشگی به ترکیبات اپیوئیدی، سیستم‌های نوروترانسیمتوری مثل NMDA گلوتامات، دوبامین و گیرنده‌های اسیدهای آمینه تحرکی خصوصاً گیرنده NMDA از جایگاه مهمی برخوردار هستند (۳۷-۴۳). نقش گیرنده‌های گلوتاماتی (NMDA) در فرآیند تبدیل پذیری سیناپسی مرتبط با اپیوئیدها ناشی از این محقق شده است (۴۰). بر پایه مطالعات انجام شده به فعالیت شدن این گیرنده‌ها ورود کلسیم به داخل سلول انزای می‌یابد.

بیدیده است که افزایش غلظت کلسیم درون سلول فاکتوری که منجر به اثرات متعددی مانند تسریع فعالیت پروتئین کیناز وابسته به کلسیم/کالیومولین (CaMk II) II (۴۱) تنظیم نشده‌است.
پروتئین کیناز C (PKC) (42)، فعال شدن نیتروژی اکساید سنتنات (43) و در نهایت تولید نیتروژی اکساید (NO) (44). نیتروژی اکساید یک تبدیل کننده عصبی است که توسط آنزیم NOS، از آل-آرژین متشاق می‌شود. آنزیم NOS توسط کلسیم-کالمودولین پروتئین کیناز II (CaMkII) فعال می‌شود. تحقیقات زیادی بانگر دخالت در ایجاد تحمل و NO وابستگی به مورفین است. شواهدی نیز می‌باشد که Tأثیر بر سیستم‌های نورورانسمیتری NOS در جهت ایجاد نقش خود وجود دارد (45). همچنین تحقیقات انجام شده نشان می‌دهد ارتباط دوطرفه بین NMDA و NO وجود دارد (42). و آزاد شدن دوپامین می‌باشد (45, 46).

2-4 بوپروپیون

بوپروپیون یکی از داروهای ضدافسردگی جدید و دارای اثر غیر مستقیم بر سیستم دوپامین و سیستم آدرننزیک می‌باشد و همچنین این دارو از لحاظ سابار شیب استیمولانت مرکزی (اثر پروپیون) می‌باشد. بوپروپیون سبب مهار برداشت مجدد سروتونین، نورآدرنالین، دوپامین و گلوتامات در مغز می‌شود (33). از سایر کاربرد های بوپروپیون به مواردی، همچون داروی کمکی در ترک سیگار، ناتوانی جنسی، چاقی، اختلال خلق و بیش فعالی نیز می‌توان اشاره کرد (37-40). ساختار شیمیایی دارو در شکل 1-2 نمایش داده شده است.
فصل دوم: مروری بر متون

شکل ۹-۲: ساختار شیمیایی بوپروپیون

بوپروپیون ساختار تنک حلقه ای آمینو کتون دارد. عوارض جانبی بوپروپیون به دلیل ساختار منحصر به فرد آن با سایر داروهای ضد افسردگی متفاوت است، ساختار بوپروپیون تا حدی شبیه به آمفتامین است (۵۱).

بوپروپیون به سرعت جذب می‌شود و میانگین اتصال پروتئین به آن ۸۵ درصد است. این دارو متابولیسم وسیع و اثر عبور اول قابل توجه دارد. این دارو سه متابولیت فعال دارد، از جمله هیدروکسی بوپروپیون که به عنوان داروی ضد افسردگی در دست بررسی است. بوپروپیون یک حذف دو مرحله‌ای دارد، مرحله نخست یک ساعت و مرحله دوم ۱۴ ساعت طول می‌کشد (۵۱).

مکانیسم دقیق اثر بوپروپیون به طور کامل شناخته نشده است. بوپروپیون و متابولیت اصلی آن هیدروکسی بوپروپیون، مهارکننده‌های متوسط بار برداشت نوراپی نفرین و دوبامین در مطالعات حیوانی هستند. با این حال این تاثیر نمی‌تواند تاثیر دارو در درمان افسردگی را به طور کامل توجیه کند. یک اثر مهمتر بوپروپیون، آزاد سازی پنت سیناپسی کانکول آمین‌ها است. در مطالعات حیوانی به نظر میرسد که بوپروپیون دسترسي پنت سیناپسی به نوراپی
فصل دوم: مروری بر متون نفرین (تا حد کمتری) و دوپامین می دهد. بوپروپیون هچ آثر مستقیمی بر سیستم سروتونین ندارد (51).

بوپروپیون در سال 1997 برای ترک سیگار مجوز گرفت، تاثیر بوپروپیون در کاهش ولع به سیگار در حدود 2 برای پلاسمو گزارش شده است. به علاوه به نظر می رسد که افراد تحت درمان با بوپروپیون در جریان ترک واکنشی به نیکوتین کنترل به اختلالات خلقی و آفزایش وزن دچار می شوند. بوپروپیون ظاهرا به اندازه جهت در بوپروپیون در ترک سیگار موثر است. مکانیسم اثر بوپروپیون در این افراد ناشناخته است. اما این دارو احتمالاً تاثیر نیکوتین در دوپامین و نورآپتی نفرین تقلید و به عنوان آنتاگونیست گیرنده های نیکوتینی عمل می کند (51).

بوپروپیون همانند سایر داروها دارای عوارض جانبی است، آشنایی ذهنی، بی خوابی و بی اشتهایی از جمله عوارض جانبی است. متابولیسم بوپروپیون عمداً از مسیر آنزیم CYP2B6 است. متابولیسم دارو توسط سیکلوفسفامید (یک سوپرای 2B6) ممکن است تغییر یابد. متابولیسم اصلی بوپروپیون هیدروکسی بوپروپیون، یک مهارکننده متوسط CYP2D6 است که می تواند سطح دزیپرامین را افزایش دهد. بوپروپیون را نباید به همراه MAOI ها تجویز کرد (51).
فصل دوم: مروری بر متون

5-2 سلکوکسیب

داروهای ضدالتهاب غیراستروئیدی از طریق مهار آنزیمهای سیکلواکسیژناز-2 و سلکوکسیزناز-1 عمل می‌کنند. آنزیم سیکلواکسیژناز-2 در دستگاه گوارشی (خصوصا معده) و کلیوی و پلاکت ها نقش مهمی را ایفا می کند. در حالیکه سیکلواکسیژناز-2 به شکل فیزیولوژیک در دستگاه گوارش نقش ایفای نمی کند. به عنوان نتیجه که هر دو آنزیم سیکلواکسیژناز-1 و سیکلواکسیژناز-2 را مهار می‌کنند، باعث مشکلاتی مثل آسیب کلیوی، زخم گوارشی و خونریزی شود. داروهای مهارکننده انتخابی سیکلواکسیژناز-2 عوارض گوارشی کمتری دارند. سلکوکسیب یک مهارکننده انتخابی سیکلواکسیژناز-2 است، نیمه عمر مثول آن حدود 11 ساعت است. نتیجه‌ی نشان می‌دهد که این دارو در ایجاد زخم مهاد و اثرات آن را کاهش داده است و اثری روی تجمع پلاکتی و خونریزی هم ندارد. سلکوکسیب یک مهارکننده کاملاً انتخابی COX-2 است. سلکوکسیب زخم های آندوسکوپی کمتری نسبت به COX-1 احتمالاً می‌کند. این دارو معمولاً بر تجمع پلاکت‌ها اثر ندارد. ولی به‌طور جهت اینکه از طریق CYP2C9 متابولیزه می‌شود با وارفارین تداخل کرده و اثرات آن را

از دیدگاه است. می‌کند (51). ساختار شیمیایی دارو در شکل 2 نمایش داده شده است.
شکل ۲-۲: ساختار شیمیایی دارویی سلکوکسیب
فصل سوم:
مواد و روش‌ها
فصل سوم: مواد و روش‌ها

1-3-1 مواد

در این بررسی مواد زیر مورد استفاده قرار گرفتند:

مورفین سولفات (شرکت دارو پخش- ایران)

به وسیله نرمال سالین رقیق شده و به صورت داخل صفاقی مورد استفاده قرار می‌گرفت.

نالوکسان (شرکت دارو پخش- ایران)

سلکوکسب (شرکت عبیدی- ایران)

در Tween 80 حل شده و با نرمال سالین رقیق گردید و به صورت درون صفاقی مورد استفاده قرار می‌گرفت.

کتامین و زایلازین از شرکت AlphaSan هلند تهیه شد.

1-3-2 دستگاه‌ها

2-3-1 ترازوی دیجیتالی

2-3-2 حیوانات

در مطالعه حاضر، از موش‌های سوری نر در محدوده وزنی 20 تا 30 گرم استفاده به عمل آمد. موش‌ها در 9 گروه به 10 گروهی در فقس‌های مخصوص تغذیه، می‌شدند و غذا و آب به مقدار کافی دریافت می‌نمودند.
فصل سوم: مواد و روش‌ها

2-3 روش‌ها

1-2 روش ایجاد تحمل در گروه‌های 9 تابی از موش‌های سوری رژیم‌های دارویی زیر به مدت 6 روز صورت گرفت:

1) Saline (10 ml/kg, i.p.) + Saline (10 ml/kg, i.p.)

2) Morphine (50 mg/kg, i.p.) + Tween80 (5%, 10 ml/kg)

3) Morphine (50 mg/kg, i.p.) + Saline (10 ml/kg, i.p.)

4) Morphine (50 mg/kg, i.p.) + Bupropion (2,4,8 mg/kg, i.p.)

5) Morphine (50 mg/kg, i.p.) + Celecoxib (5,10,20 mg/kg, i.p.)

6) Morphine (50 mg/kg, i.p.) + Bupropione (effective dose) + Celecoxib (effective dose)

به عبارت دیگر دو روز قبل از دریافت روزانه مورفین، موش‌ها دوزهای مختلفی از رژیم‌های دارویی بوبروپیون یا سلکوکسیب هر کدام را به تنهایی و یا ترکیبی در روز سوم تا ششم مورفین (50 mg/kg, i.p.) به رژیم‌های دارویی اضافه گردید و در روز ششم
فصل سوم: مواد و روش‌ها

2 ساعت بعد از آخرین دوز مورفین در گروه‌های مورد مطالعه نالوکسان (4 mg/kg, i.p) تزریق شده و علائم قعط مصرف (پریدن و ایستادن روه دوپا) طی نیم ساعت ساده شد. بعد از اتمام تست‌های رفتاری (پریدن و ایستادن روه دوپا) با بیهوش کردن حیوانات، خون گیری از قلب آنها به عمل آمده و سپس تست‌های مربوط به مقدار TNF-α و IL-1β مورد ارزیابی قرار گرفتند. بیهوشی حیوانات با تزریق توام کتامین (100mg/kg, i.p) و زایلازین (10mg/kg, i.p) صورت گرفت.

2-2-2 بررسی تأثیر داروها

1-1 بررسی نمونه‌های خونی حیوانات

به منظور اندازه‌گیری سطوح سرمی (IL-1β و TNF-α) از 93 سر موش از هر گروه، نمونه‌های خونی گرفته شد. برای جلوگیری از تغییرات در ترکیبات خون سرم گیری از دستگاه سانتریفیوز با سرعت 4333 rpm درجه سانتی‌گراد درای کاهش داده شد. همچنین اندازه‌گیری سایتوکین‌های TNF-α و IL-1β با استفاده از کیت الایزا مطابق با دستور سازنده (کیت) انجام شد.

3-2-3 بررسی آماری نتایج

برای این پژوهش از نرم‌افزار SPSS استفاده شد. نتایج آزمایشات به‌صورت تست آماری با استفاده از نرم‌افزار ANOVA تجزیه‌گرای آنالیز داده‌ها با استفاده از نرم‌افزار Tukey تست‌های پت‌ست برای تیم گروه‌ها انجام شد. برای مشخص شدن اختلاف بین گروه‌ها از پس آزمونات آماری با لحاظ کردن P<0.05، نتایج معنی‌دار تلقی شد.
فصل چهارم:
نتایج
فصل چهارم: نتایج

1- اثرات تجویز مورفین در پیدايش واپستگی به مورفین و بروز علائم قطع مصرف مورفین (تعداد پرش و ایستادن):

همانطوریکه در نمودار ۱-۴ مشاهده می شود دریافت مورفین (۵۰mg/kg,i.p.) به مدت ۴ روز در گروه مورفین + نرمال سالین نسبت به گروه دریافت کننده نرمال سالین + نرمال سالین سبب پیدايش واپستگی به مورفین شده است. چراکه در روز سوم پس از دریافت نالوکسان علائم ضرری ناراحتی و ضعیف شده است. مشاهده شده که به صورت معنی داری بیشتر از گروه نرمال سالین + نرمال سالین می باشد (P<0.001).
نمودار ۱-۲: مقایسه علائم قطع مصرف ایجاد شده با مورفین (۵۰mg/kg,i.p) بر روی گروه سالین (تعداد پرش و ایستادن)، که به وسیله نالوکسان (۴mg/kg,i.p) ایجاد شد. هرستون در p value ** بینانگر برای ۹ موش سوري می باشد. *** بینانگر ۹/۰۰۱ در مقایسه با گروه کنترل (Saline+Saline) می باشد.
فصل چهارم: نتایج

- ارزیابی اثرات رژیم درمانی بوپروپیون در علائم قطع مصرف مورفین (تعداد پرش)

همانطوریکه در نمودار ۱-۴ مشاهده می‌شود در تزریق دوزهای مختلفی از بوپروپیون به همراه مورفین (۵۰ mg/kg, i.p.) علائم قطع مصرف (تعداد پرش) به صورت معنی‌داری کاهش نیافت است.
نمودار ۲-۴ اثرات دوزهای مختلف بوپروپیون (۲, ۴, ۸ mg/kg, i.p.) بر روی علائم قطع مصرف مورفین (تعداد پرش) که به وسیله نالوکسان (۴mg/kg, i.p.) در موش های ۱ موش سوری برای ۹ موش سوري Mean± SEM وابسته به مورفین ایجاد شده است. هرستون بیانگر می باشد.

Bup: Bupropion ,Mor: Morphine
فصل چهارم: نتایج

3-4 ارزیابی اثرات رژیم درمانی بوپروپیون در علائم قطع مصرف مورفین (تعداد ایستادن)

همانطور که در نمودار 3-4 مشاهده می‌شود تزریق دوزهای مختلف بوپروپیون (2, 4, 8 mg/kg, i.p.) همراه مورفین (50 mg/kg, i.p.) علائم قطع مصرف (تعداد ایستادن) را به طور معنی‌داری کاهش نداده است.
نمودار 3-4: اثرات دوزهای مختلف از بوپروپیون (2, 4, 8 mg/kg, i.p.) بر روی علائم قطع کردن مصرف مورفین (تعداد ایستادن) که به وسیله نالوکسان (4 mg/kg, i.p.) در موش‌های وابسته به مورفین ایجاد شده است. هرستون بیانگر Mean ± SEM برای 9 موش سوري می‌باشد.

Bup: Bupropion, Mor: Morphine.
فصل چهارم: نتایج

4- اثرات رژیم درمانی سلکوکسیب در علائم قطع مصرف مورفین (تعداد پرش)

همان طور که در نمودار 4- مشاهده می‌شود تزریق دوزهای مختلف سلکوکسیب (5 50 mg/kg.i.p., 10 mg/kg.i.p.) همراه مورفین (50, 100) علائم قطع مصرف (تعداد پرش) را به طور معنی‌داری کاهش نداده است.
فصل چهارم: نتایج
نمودار ۴-۴: اثرات دوزهای مختلف سلکوکسیب (۰.۵، ۱۰، ۲۰ mg/kg, i.p.) بر روی علائم قطع مصرف مورفین (تعداد پرش) که به وسیله نالوکسان (۴mg/kg, i.p.) در موس های وابسته به مورفین ایجاد شده است. هر استاندارد بانگر برای ۹ موش Mean ± SEM سوری می‌باشد.

Cele: Celecoxib , Mor: Morphine
فصل چهارم: نتایج

5-2 اثرات رژیم درمانی سلکوکسیپ در علائم قطع مصرف مورفین (ایستادن)

همان طوری که در نمودار 5-2 مشاهده می‌شود تزریق دوزهای مختلف سلکوکسیپ (50 mg/kg,i.p. (20, 10, 5) همراه مورفین (50 mg/kg,i.p. همراه مورفین (50 mg/kg,i.p. همراه مورفین (50 mg/kg,i.p. همراه مورفین (50 mg/kg,i.p. علائم قطع مصرف تعداد ایستادن را کاهش نداد.

ایستادن را کاهش نداد.
فصل چهارم: نتایج
نمودار 5-4: اثرات دوزهای مختلف از سلکوکسیب (4mg/kg, i.p.) بر روی علائم قطع مصرف مورفین (تعداد ایستادن) که به وسیله نالوکسان (4mg/kg, i.p.) در موش های وابسته به مورفین ایجاد شده است. هرستون بیانگر Mean±SEM برای 9 موش سوری می باشد.

Cele: Celecoxib Mor: Morphine
فصل چهارم: نتایج

اثرات رژیم درمانی توأم داروهای سلکوکسیب (5 mg/kg,i.p.) و بوپروپیون (2 mg/kg,i.p.) در علائم قطع مصرف مورفین (تعداد پرش) همان طوریکه در نمودار 6-4 مشاهده می‌شود، تزریق توأم سلکوکسیب (50 mg/kg,i.p.) و بوپروپیون (2 mg/kg,i.p.) به همراه مورفین (5 mg/kg,i.p.) علائم قطع مصرف (تعداد پرش) را به طور معنی‌داری کاهش نداد.

6-4: علائم قطع مصرف مورفین (تعداد پرش)
فصل چهارم: نتایج

نمودار ۶-۴: اثرات مصرف توامدار داروی سلکوکسیب (۵ mg/kg, i.p.) و بوپروپیون (۲mg/kg, i.p.) بر روی علائم قطع مصرف مورفین (تعداد پرش) که به وسیله نالوکسان (۴mg/kg, i.p.) درموش های وابسته به مورفین ایجاد شده است. هرستون بیانگر برای ۹ موش سوری می‌باشد. Mean±SEM

Combination: celecoxib 5mg+2 mgbupropion
فصل چهارم: نتایج

اثرات رژیم درمانی توأم داروها در درعلائم قطع مصرف مورفین (تعداد استادان)

همان طریقه در نمودار 7-4 مشاهده می‌شود در استفاده از تزریق توأم داروهای سلکوکسپیپ (5 mg/kg,i.p.) و بومپرپیون (2 mg/kg,i.p.) همراه مورفین (50 mg/kg,i.p.) علائم قطع مصرف (تعداد استادان) را به طور معنی‌داری کاهش نیافت است.
نمودار 7-4: اثرات مصرف توأم داروهای سلکوکسیب (5 mg/kg,i.p.) و بوپروپیون (2 mg/kg,i.p.) بر روی علائم قطع مصرف مورفین (تعداد ایستادن) که به وسیله نالوکسان (4 mg/kg,i.p.) در موش‌های وابسته به مورفین ایجاد شده است. هر ستون بیانگر میانگین ± رمزنگاری باشد. (Mean±SEM)

Combination: celecoxib 5mg+2 mg bupropion
فصل چهارم: نتایج

اثرات رژیم درمانی بوپروپیون و سلکوکسیب در فاکتورهای التهابی در سرم خون (IL-1β)

همانطوری که در جدول ۱-۴ مشاهده می‌شود استفاده از دوز‌های مختلفی از بوپروپیون و سلکوکسیب تفاوت معنی‌داری در سطح سرمی IL-1β در گروه‌های تحت درمان با بوپروپیون و یا سلکوکسیب نسبت به گروه‌های کنترل (مورفین + نرمال سالین و مورفین + تونین) وجود ندارد.

جدول ۱-۴: تأثیر دوز‌های مختلف بوپروپیون (۲, ۴, ۸ mg/kg, i.p.) و سلکوکسیب (۵, ۱۰ mg/kg, i.p.) بر سطح سرمی IL-1β، نتایج به صورت میانگین±انحراف معیار تعیین گردیده است.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>IL-1β (Mean±SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline+ Saline</td>
<td>29.00±4.18</td>
</tr>
<tr>
<td>Saline +Morphine</td>
<td>45.25±11.33</td>
</tr>
<tr>
<td>Tween80+Morphine</td>
<td>76.50±13.44</td>
</tr>
<tr>
<td>Celecoxib 5 mg + Morphine</td>
<td>34.25±10.07</td>
</tr>
<tr>
<td>Celecoxib 10 mg + Morphine</td>
<td>66.75±18.64</td>
</tr>
<tr>
<td>Celecoxib 20 mg + Morphine</td>
<td>47.25±4.82</td>
</tr>
<tr>
<td>Bupropion 2 mg + Morphine</td>
<td>44.25±9.30</td>
</tr>
<tr>
<td>Bupropion 4 mg + Morphine</td>
<td>54.00±14.46</td>
</tr>
<tr>
<td>Bupropion 8 mg + Morphine</td>
<td>52.25±0.47</td>
</tr>
<tr>
<td>Celecoxib 5 mg + Bupropion 2 mg + Morphine</td>
<td>53.50±7.68</td>
</tr>
</tbody>
</table>
فصل چهارم: نتایج

اثرات رژیم درمانی بوپروپیون و سلکوکسیب در فاکتورهای التهابی در سرم خون (TNFα)

همانطوریکه در جدول ۲-۴ مشاهده می‌شود، تفاوت معنی‌داری در سطح سرمی TNFα در گروه‌های تحت درمان با دوزهای مختلفی از بوپروپیون (۲, ۴, ۸ mg/kg, i.p.) و سلکوکسیب (۵، ۱۰، ۲۰ mg/kg, i.p.) نسبت به گروه‌های کنترل مشاهده نمی‌شود.

جدول ۲-۴: داده‌های مربوط به تست TNFα در گروه‌های مورد مطالعه. نتایج به صورت میانگین±انحراف معیار تنظیم گردیده است.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>TNF-α (Mean±SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline+ Saline</td>
<td>3.43±5.52</td>
</tr>
<tr>
<td>Saline +Morphine</td>
<td>21.75±15.14</td>
</tr>
<tr>
<td>Tween80+Morphine</td>
<td>55.72±21.54</td>
</tr>
<tr>
<td>Celecoxib 5 mg + Morphine</td>
<td>8.25±5.17</td>
</tr>
<tr>
<td>Celecoxib 10 mg + Morphine</td>
<td>42.90±24.51</td>
</tr>
<tr>
<td>Celecoxib 20 mg + Morphine</td>
<td>15.28±10.60</td>
</tr>
<tr>
<td>Bupropion 2 mg + Morphine</td>
<td>9.75±3.44</td>
</tr>
<tr>
<td>Bupropion 4 mg + Morphine</td>
<td>16.65±10.92</td>
</tr>
<tr>
<td>Bupropion 8 mg + Morphine</td>
<td>9.33±1.77</td>
</tr>
<tr>
<td>Celecoxib 5 mg + Bupropion 2 mg + Morphine</td>
<td>8.60±3.34</td>
</tr>
</tbody>
</table>
فصل پنجم:
بحث و بررسی
فصل پنجم: بحث و بررسی

۱- بحث و بررسی

درد و التهاب از مشکلاتی است که بشر همواره از راه‌های مختلف در صدد رفع و یا کاهش آن بوده است. احساس درد همواره با انسان در حالات مختلف بیماری همرار همه بوده است. درد حتی به مقدار کم تمام سیستم فیزیولوژیک و عصبی انسان را تحت تأثیر قرار می‌دهد. به کار گیری گیاهان داروئی (با خواص ضد دردی)، اپیوئیدها و یا سایر داروهای ضد درد برای درمان و یا برای پیشگیری از حملات درد استفاده می‌شود. مورفین اثرات خود را از راه اتصال به گیرنده‌های اپیوئیدی که در سیستم اعصاب مرکزی و محیطی شناسایی شده اند، اعمال می‌کند. مهمترین گیرنده‌ها شامل مو، دلتا و کاپا می‌باشند. نالوکسان به عنوان آنتاگونیست گیرنده‌های اپیوئیدی که در اتصال به این گیرنده‌ها قادر است اثرات مورفین را مهار کند (۵۷).

بر اساس مطالعات انجام شده بر روی تأثیر مورفین مشخص شده است که ارتباط معنی‌داری بین مورفین با بی دردی، حافظه و پدیده‌های رفتاری وجود دارد. همچنین مطالعات نشان داد که مورفین باعث تغییر مقدار قند خون می‌شود، به طوری که قند خون بیماران دیابتی بعد از مصرف مورفین تغییر یافته (۵۸).

علی رغم اینکه مورفین یکی از بهترین و مؤثرترین داروهای اپیوئیدی است که امروزه به منظور کنترل دردهای متوسط تا شدید مورد استفاده قرار می‌گیرد، اما مصرف طولانی مدت اپیوئیدها در این راستا به واسطه این ترکیبات می‌شود. با قطع مصرف اپیوئید علائم منجر به این ترکیبات می‌شود.
فصل پنجم: بحث و بررسی

محرومیت شامل اضطراب، دردهای عضلانی، تحريك پذیری عصبی و حتی تشنج نیز گاهی ایجاد میشود (59).

متأسفانه بروز سریع دو پدیده تحمل و وابستگی نسبت به اثرات مورفین و سایر اپیوئیدها مهم ترین عامل محدود کننده مصرف این داروهاست. مطالعات زیادی نشانده که بررسی مکانیسم‌های دخیل در وابستگی به اپیوئیدها صورت گرفته است. از جمله این مکانیسم‌ها تغییر در سطح مونوآمین‌های مثل سروتونین، نوراپی‌پرفین و دوپامین می‌باشند (60، 61). به نظر می‌رسد کاتکول‌آمین‌های مرکزی نقش مهمی در علائم حرکتی سندرم محرومیت داشته باشند (62). یکی از مناطق ساختاری مغزی که در بروز علائم محرومیت به اپیوئیدها دخیل است، لوکوس سرولوس می‌باشد. در این ناحیه گیرنده‌های آلفا آدرنرژیک و گیرنده‌های اپیوئیدی وجود دارد (63). نتایج مطالعات نشان می‌دهد اپیوئیدها باعث کاهش فعالیت نورونهای آدرنرژیک در لوکوس سرولوس می‌شوند و همچنین شواهدی از فعالیت بیش از حد این ناحیه در سندرم محرومیت وجود دارد (64). بنابراین افزایش سطح مونوآمین‌ها منجر به تغییر در وابستگی به اپیوئیدها می‌شود. یکی از راه‌های افزایش سطح مونوآمین‌ها استفاده از مهارکننده‌پای جذب این ترکیبات است (65).

در مطالعات قبل بوپروپیون (5 mg/kg, sc) موجب تاثیرات معنی‌داری در تحمل و وابستگی ناشی از مورفین را داشته است (7)؛ در حالیکه در مطالعه حاضر با تجویز پیشگیرانه بوپروپیون نه تنها علائم قطع مصرف به عنوان شناخت وابستگی کاهش نیافت بلکه تجویز بوپروپیون در دوز 8 mg/kg موجب افزایش علائم وابستگی گردید لذا به نظر می‌رسد
بپروپیون در دوزهای مختلف اثرات متفاوتی در فرآیند شکل‌گیری وابستگی داشته باشد، که جهت درک دقیق مکانیسم‌های احتمالی نیاز ندارد مطالعات دیگری انجام پذیرد. از طرفی دیگر احتمال نتایج مطالعه حاضر با مطالعات قبلی در اختلاف روش مطالعه باشد اجرا که در تحقیق مرجع بپروپیون با دوز 5 mg/kg و به صورت زیر جلدی (Sc) و به صورت درمانی (تزئین حیوانات) 9 روزه انجام گرفته است. در بخش دیگری از مطالعه حاضر به نتایج حاکی است که سلکوکسیب در علائم قطع مصرف ناشی از مورفین پرداختن به سلکوکسیب در دوزهای مختلف در تحقیق تجویز در این تحقیق تأثیرات معنی‌داری در کاهش یا افزایش علائم قطع مصرف ندارد؛ لذا پیشنهاد می‌شود دوزهای دیگری از سلکوکسیب مورد مطالعه قرار گیرد. همچنین تجویز توام بپروپیون و 2 mg/kg سلکوکسیب با دوز 5 mg/kg 5 نیز اثرات معنی‌داری را ایجاد نکرد.

نتایج مطالعات قبلی نشان می‌دهد که تجویز بعضی از داروها باعث افزایش علائم وابستگی به مورفین می‌شوند که از جمله آن ها داروهای آمی ترپیتین، مكلومیپابد، ربوکستین (66)، سیرترالین (67)، کلومپیرامین و دزپرامین (68) را می‌توان اشاره نمود (جدول 5-1).
جدول ۱-۵: تأثیر داروهای مختلف بر وابستگی به مورفین

<table>
<thead>
<tr>
<th>داروها</th>
<th>نوع اثر</th>
<th>نویسنده‌گان</th>
<th>رفرنس</th>
</tr>
</thead>
<tbody>
<tr>
<td>دولوکستین</td>
<td>کاهش وابستگی به مورفین</td>
<td>Karimi</td>
<td>(۶۹)</td>
</tr>
<tr>
<td>میرتازاپین</td>
<td>کاهش وابستگی به مورفین</td>
<td>Baraldi</td>
<td>(۷۰)</td>
</tr>
<tr>
<td>نلافاکسین</td>
<td>کاهش وابستگی به مورفین</td>
<td>Motaghinejad</td>
<td>(۷۱)</td>
</tr>
<tr>
<td>ایمیپرامین</td>
<td>افزایش وابستگی به مورفین</td>
<td>Baraldi</td>
<td>(۷۲)</td>
</tr>
<tr>
<td>آمپتیپین</td>
<td>افزایش وابستگی به مورفین</td>
<td>Cegielska-Perun</td>
<td>(۶۶)</td>
</tr>
<tr>
<td>مکلوبماید</td>
<td>افزایش وابستگی به مورفین</td>
<td>Cegielska-Perun</td>
<td>(۶۶)</td>
</tr>
<tr>
<td>ریبوکسین</td>
<td>افزایش وابستگی به مورفین</td>
<td>Cegielska-Perun</td>
<td>(۶۶)</td>
</tr>
<tr>
<td>کلوپرامین</td>
<td>افزایش وابستگی به مورفین</td>
<td>Kellstein</td>
<td>(۶۸)</td>
</tr>
<tr>
<td>دزی پرامین</td>
<td>افزایش وابستگی به مورفین</td>
<td>Kellstein</td>
<td>(۶۸)</td>
</tr>
<tr>
<td>سرترالین</td>
<td>افزایش وابستگی به مورفین</td>
<td>Pakulska</td>
<td>(۶۷)</td>
</tr>
<tr>
<td>سیتالوپرام</td>
<td>اثری نداشت</td>
<td>Pettersen</td>
<td>(۷۳)</td>
</tr>
</tbody>
</table>

در یک پژوهش که بر روی داروی سیتالوپرام که داروی مهار کننده بازجذب سروتونین است

انجام شد مشخص شد که این دارو اثری بر روی کاهش علائم وابستگی به مورفین نداشت است.
فصل پنجم: بحث و بررسی

(۷۳) لذا به نظر می‌رسد تجویز پیشگیرانه (دو روز قبل از تجویز رژیم درمانی مورفین) از دوزهای مختلف بوپروپیون (۲، ۴، ۸ mg/kg,i.p) و سلكوکسب (۵، ۱۰، ۲۰ mg/kg,i.p) اقدام مناسبی جهت پیشگیری از کاهش علائم وابستگی ناشی از مورفین نباشند.
امروزه کاهش اثرات وابستگی به مورفین در درمان بیماران اهمیت بسیار زیادی دارد. با توجه به اهمیت بالای سلکوسپیب و بوپروپیون در علم پزشکی اما نتایج پژوهش نشان داد که دوزهای مورد مطالعه این داروها کاندید مناسبی چهت کاهش وابستگی ناشی از مورفین نمی‌باشند.
فصل پنجم: بحث و بررسی

پیشنهادات:

1- بررسی اثر کاهش علائم وابستگی به مورفین با استفاده از داروهای سلکوکسب و بوروبیون در دوزهای پایین تر

2- استفاده از نمونه‌های غیر خونی جهت اندازه‌گیری فاکتورهای TNF-α و IL-β

3- استفاده از نمونه‌های غیر خونی جهت اندازه‌گیری فاکتورهای TNF-α و IL-β
منابع
References:

34. برترام، ک: فارماکولوژی پایه و بالینی. جلد اول- چاپ اول. انتشارات ارجمند، تهران، صفحه 691-8، 1397.

Abstract

Introduction

One of the problems associated with long-term use of morphine is the effect of tolerance and dependence, on the acute use of morphine affecting the production and secretion of various cytokines (TNF-α, IL-β, etc.) and the glutamate system. Bupropion, an antidepressant, and celecoxib, as an anti-inflammatory drug, affects the secretion of various cytokines.

Objective:

In this study, the possible effects of bupropion and celecoxib on morphine-induced dependence were evaluated.

Materials and methods:

In the present study, 90 male mice (20-30 g) were divided into 10 groups of 9 mice. Different groups received the drug regimens for 6 days, respectively. The animals were given different doses of bupropion (2, 4, 8 mg / kg, i.p.) or celecoxib (5, 10, 20 mg / kg, i.p.) for two days individually or in combination (bupropion 2 mg / kg, i.p and celecoxib 5 mg / kg, i.p.). The mice were received morphine (50mg / kg, i.p.) for four days, along with doses of the studied drug regimens. Animals received naloxone (4 mg / kg, i.p.) after 2h of the last dose of morphine, and symptoms of discontinuation (jumping and standing on feet) were assessed for 30 minute in each animal.

Results:

The results showed that the administration of different doses of celecoxib had no significant effect on morphine withdrawal symptoms. But bupropion at 8 mg/kg dose significantly increased withdrawal symptoms (P <0.001). Also, no significant changes in serum levels of inflammatory factors caused by different doses of the studied drugs were observed.
Conclusion:
Celecoxib and bupropion at the doses studied are not suitable candidates to reduce morphine-induced dependence.

Key words: Celecoxib, bupropion, morphine, dependence and inflammation
Entitled:
Comparison of the effects of Bupropion and Celecoxib in behavioral and inflammatory parameters in dependency induced by Morphine in mice

By:
Mohamad Mehdi Mokhtari

Supervisors:
Dr Bohlul Habibi-asl
Dr Yadollah Azarmi

Advisor:
Dr Javad Mahmoudi

June 2019 Thesis No.